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Abstract
Elastic behaviour associated with the hierarchy of tilting transitions in SrZrO3 has been
examined using resonant ultrasound spectroscopy on a ceramic sample at temperatures between
153 and 1531 K. Changes in slope of the evolution of resonance frequencies with temperature
indicate that phase transitions occur at 1038 K (Pnma ↔ Imma), 1122 K
(Imma ↔ I 4/mcm), and 1367 K (I 4/mcm ↔ Pm3̄m). Strain analysis of previously recorded
neutron diffraction data shows that the I 4/mcm ↔ Pm3̄m and Pnma ↔ Imma transitions
are close to tricritical in character, and that Imma ↔ I 4/mcm is first order. Deviations from
the form of the elastic behaviour predicted by Landau theory are found. In particular, elastic
softening in the vicinity of the Imma ↔ I 4/mcm transition suggests that local dynamical
fluctuations between individual tilt systems occur, rather than a discontinuous switch from one
phase to another. Determinations of the mechanical quality factor, Q, show that SrZrO3 in the
Pm3̄m phase is a classically high-Q (i.e. non-dissipating) cubic material. I 4/mcm and Imma
phases both have much greater dissipation (low Q), which is tentatively attributed to the
mobility of twin walls. The room temperature Pnma phase is unexpectedly much stiffer than
both I 4/mcm and Imma phases and has high Q. It appears that when two separate tilt systems
operate, as in Pnma, they can interact to reduce strain/order parameter relaxations.

1. Introduction

Perovskite structures (ABO3) are well known to undergo
sequences of phase transitions due to structural distortions
associated with changing temperature (Glazer 1972, 1975,
Aleksandrov 1976, 1978, Salje 1989). Whether these
transitions arise as a consequence of distortions of the BO6

octahedral units, displacements of the B-cation within the
octahedra, or tilting of the corner-linked BO6 octahedra
(Megaw 1973), they are commonly observed to give rise to
large anomalies in elastic properties (e.g. Rehwald 1973, Lüthi
and Rehwald 1981, Carpenter and Salje 1998, Harrison et al
2003, Carpenter 2006, Walsh et al 2008).

An example of a classically studied ferroelectric
perovskite is BaTiO3, in which transitions are associated with
a single instability at the �-point of the Brillouin zone, where
each Ti cation is displaced in a specified direction within its

octahedron. The sequence of transitions for BaTiO3, described
in detail by Devonshire (1949, 1951, 1954), is cubic ↔
tetragonal ↔ orthorhombic ↔ rhombohedral. The transitions
are at 400 K, 290 K and 190 K respectively and all phases
are ferroelectric, except the cubic phase which is paraelectric
(Schaller et al 2001). Sharp anomalies (minima) in the
elastic modulus, E , associated with these transitions have been
observed by Cheng et al (1994) by electrostatically driving the
samples in flexural vibration. The same study also noted that
each transition is accompanied by a narrow peak in the internal
friction, Q−1, as a function of temperature. Similar results for
the tetragonal ↔ orthorhombic ↔ rhombohedral temperature
region have been measured using an inverted torsion pendulum
experiment by Zhang et al (1994). In principle, the different
structures of BaTiO3 occur in association with a single critical
temperature but differ in the orientation of the order parameter.
In terms of the three order parameter components aligned along
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Table 1. Transition temperatures for SrZrO3 from previous studies. T 1 is the transition temperature for what we understand to be the
Pnma ↔ Imma transition, T 2 is Imma ↔ I4/mcm, and T 3 is I4/mcm ↔ Pm3̄m. Transition temperatures presented in this study are
added to the table for completion.

Paper Method Sample type T 1 (K) T 2 (K) T 3 (K)

Carlsson (1967) Differential thermal analysis Sintered pellet 1003 ± 25 1133 ± 25
Carlsson (1967) XRD Sintered pellet 973 1103 1443
De Ligny and Richet (1996) Drop calorimetry = heat capacity Powder 995 ± 5 1105 ± 5 1440 ± 25
De Ligny and Richet (1996) Energy dispersive

XRD = thermal expansion
Powder 970

Kennedy et al (1999) Neutron diffraction and Rietveld
refinement

Powder 1020 1360

Howard et al (2000) High resolution neutron
diffraction

Powder 1023
(contin.)

1113
(discont.)

1343
(contin.)

Matsuda et al (2003) Differential scanning calorimetry Sintered pellet 1041 1130 1376
Matsuda et al (2003) Dilatometry = thermal expansion Pellet 1035
Fujimori et al (2004) Raman spectroscopy Solid (polymerized

complex method)
995 1105

This study Resonant ultrasound
spectroscopy

Sintered pellet 1038 ± 1 1122 ± 1 1367 ± 1

orthogonal axes, the tetragonal structure has q1 �= 0, q2 =
q3 = 0, the orthorhombic structure has q1 = q2 �= 0, q3 = 0,
and the rhombohedral structure has q1 = q2 = q3 �= 0.
Devonshire (1949, 1951, 1954) showed that the full sequence
should only be observed when the initial instability is first order
in character (negative fourth order coefficient in a 246 Landau
potential).

It is expected that exactly analogous sequences to that in
BaTiO3 should occur in structures where phase transitions are
due to octahedral tilting rather than ferroelectric displacements.
An R-point instability might give Pm3̄m ↔ I 4/mcm (q1 �=
0, q2 = q3 = 0) ↔ Imma (q1 = q2 �= 0, q3 = 0) ↔
R3̄c (q1 = q2 = q3 �= 0), for example. In addition,
however, tilting transitions can be due to multiple instabilities
with, in particular, simultaneous tilting associated with the
special points M and R (Howard and Stokes 1998, Carpenter
et al 2001, Carpenter 2007). The sequence of transitions
in SrZrO3 includes aspects of the hierarchy due to an R-
point instability plus an M-point instability in the sequence,
according to Howard et al (2000):

A 246 Landau potential should, in principle, describe the
structural sequence and order parameter evolution in SrZrO3,
in exactly the same manner as it does for BaTiO3. The
most stringent test of this is provided by analysis of elastic
constants, which probe the second derivatives of free energy
with respect to strain and are thus highly sensitive to the order
parameter susceptibility. It has recently been found, however,
that tilting transitions in (Ca,Sr)TiO3 perovskites give rise to a
complex pattern of elastic anomalies and acoustic dissipation,
showing that the classical Landau description does not provide
a complete description of real behaviour (Harrison et al 2003,
Carpenter et al 2007, Walsh et al 2008). The question then
arises as to whether deviations from classical behaviour are
the same or different between transitions driven by octahedral
tilting and ferroelectric displacements in perovskites.

The intrinsic physical properties of perovskites and the
dynamic behaviour of their microstructures are important in
a wide range of contexts, and both are strongly influenced by
phase transitions. For example (Mg,Fe)SiO3 perovskite forms
a substantial proportion of the Earth’s lower mantle, where it
is believed to have Pnma symmetry (Wentzcovitch et al 1993,
Stixrude and Cohen 1993, Fiquet et al 1998, Ono et al 2004a);
CaSiO3 is present in the mantle in smaller proportions and may
be cubic (Pm3̄m) or tetragonal (I 4/mcm) (Ono et al 2004b,
Kurashina et al 2004, Caracas et al 2005, Jung and Oganov
2005, Li et al 2006a, 2006b, Adams and Oganov 2006).
Confirmation of their presence depends on the velocities
of seismic waves, which in turn depend on their elastic
properties. In a completely different context, Pnma manganite
perovskites are also important for their remarkable electronic
properties with the possibility of coupling between octahedral
tilting and Jahn–Teller octahedral distortions (e.g. Goodenough
1998, Lufaso and Woodward 2004). In all these materials,
the extent to which strain/order parameter coupling occurs
has a strong bearing on the resulting elastic behaviour, and
the mobility of transformation twin walls controls switching
kinetics and acoustic dissipation.

Against this broader background, the present study is a
detailed analysis of the elastic anomalies and acoustic dissi-
pation which accompany octahedral tilting phase transitions in
SrZrO3. There have been many previous studies of this system
and a summary of their suggested transition temperatures is
given in table 1. The most recent high resolution powder neu-
tron diffraction results of Howard et al (2000) are used here as
a basis for interpreting the results of resonant ultrasound spec-
troscopy (RUS) measurements on a polycrystalline sample of
SrZrO3 over the temperature interval 153–1531 K. The paper
is divided into several sections. Section 2 explains the way
in which the experiments were carried out and results are pre-
sented in section 3. Section 4 presents an analysis of strain data
across the transition sequence, section 5 contains a description
of how the elastic properties are expected to behave accord-
ing to Landau theory, and section 6 is a general discussion of
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the elastic behaviour of the SrZrO3 system as understood from
the results of this study. In an accompanying paper (McKnight
et al 2009),  the elastic behaviour of ceramic samples of differ-
ent compositions across the solid solution series with SrZrO3

and SrTiO3 end members is described.

2. Experimental details

2.1. Apparatus

The RUS system used for high temperature measurements
consists of two alumina rods mounted horizontally inside
a Netzsch 1600 ◦C furnace. The sample is prepared as a
parallelepiped and is balanced across its corners between the
ends of the rods inside the furnace. Piezoelectric transducers
are attached to the other ends of the rods outside the furnace.
One transducer acts as the driving resonator and the other
as the detector using Dynamic Resonance System (DRS)
M3odulus II electronics. The low temperature system has the
parallelepiped balanced directly between the two transducers,
which are inserted vertically into a helium cryostat. These high
temperature and low temperature RUS systems are described
in detail by McKnight et al (2008, 2007), respectively.  The
only alteration to previously described experiments is that the
low temperature transducer heads have been re-coated with
gold, by vapour deposition, in order to reduce radio frequency
interference.

2.2. Sample preparation and characterization

Strontium zirconate powder (<10 μm, Sigma-Aldrich) was
ground in acetone in an agate ball-mill for 1 h at 600 rpm.
Approximately 4 g of the milled powder was pressed into a
pellet in a standard cylindrical IR pellet die (diameter 13 mm),
using a bench-top press under ∼4500 psi (≈31 MPa) of
uniaxial pressure and under a vacuum generated by a rotary
pump for approximately 5 min. The pellet was then annealed
in air at 1600 ◦C for 48 h. Several parallelepipeds were cut
from the pellet using a fine annular diamond saw, lubricated
with paraffin. During the cutting process, the pellet was glued
to a glass block using Crystalbond glue, manufactured by SPI
supplies, with a softening temperature of 120–130 ◦C. Offcuts
of the pellet were ground by hand in an acetone slurry, using an
agate pestle and mortar, for characterization by powder x-ray
diffraction. The room temperature diffraction pattern, collected
with a Bruker D8 diffractometer using Cu Kα1 radiation,
contained only peaks which could be assigned to Pnma
perovskite. SEM analysis in standard imaging modes of one of
the pellet offcuts showed that individual grains were less than
10 μm across, with the smallest grain sizes at approximately
2 μm. Examination of a thin section of the same offcut under
the petrographic microscope showed evidence of twins in some
of the grains.

The parallelepiped selected for high and low temperature
RUS experiments was examined under a binocular microscope
to make sure that it was free from visible cracks. At room
temperature, the dimensions of this sample were 1.861 mm ×
2.922 mm × 4.699 mm, weight 0.1352 g, and density
5.2911 g cm−3. This density is 97.2% of the theoretical density

calculated from the lattice parameters given by Howard et al
(2000) and the sample is therefore presumed to have ∼2.8%
porosity.

2.3. Data collection and analysis

Using the high temperature RUS system, the parallelepiped
was heated from room temperature to 1531 in 30 K steps with
a 15 min equilibration time at each temperature. It was then
cooled back to room temperature in 10 K steps with a 10 min
equilibration time. In the vicinity of the three known phase
transition temperatures of SrZrO3 (Howard et al 2000) the
temperature increment was reduced to 1 K and the thermal
equilibration time at each step was 5 min. The sample was
then transferred to the low temperature RUS system where it
was cooled from room temperature to 153 K in 40 K steps
with equilibration at each temperature for 20 min. It was then
heated back to room temperature in 5 K steps with 10 min
equilibration at each step.

During heating and cooling, spectra were collected at each
step after equilibration. For high temperature measurements,
spectra were collected in the frequency range 200–1200 kHz
with 50 000 data points. Low temperature measurements were
taken in the range 200–1500 kHz, also with 50 000 data points.
Room temperature spectra were collected before any high or
low temperature experiments were carried out. These were
taken in the frequency range 200–1200 kHz with the sample
in four different orientations to ensure that all resonances of
the sample were excited and observed.

All spectra were transferred to the software package Igor
Pro (WaveMetrics) for detailed analysis. Peak positions and
half-widths were determined for selected peaks by fitting with
an asymmetric Lorentzian function, an approach analogous
to that described by Schreuer et al (2003) and Schreuer and
Thybaut (2005). The mechanical quality factor, Q, is given
by Q = f/� f , where f is the peak frequency and � f is the
peak width at half-maximum height. The inverse quality factor,
Q−1, is a measure of acoustic dissipation within the sample.

Bulk and shear moduli (K and G respectively) were
determined by matching observed peak frequencies with
calculated frequencies using the DRS software (Migliori and
Sarrao 1997) and assuming an isotropic medium. The
same sample dimensions and density were used for fits at
all temperatures. No correction for thermal expansion was
applied, due to the fact that the approximately linear thermal
expansion of ∼0.1% every 100 K seen in SrZrO3 (Howard
et al 2000, Matsuda et al 2003) will have negligible effects
on values of K and G, and the general form of the elastic
behaviour that is attributed to the effects of phase transitions
will still be the same.

The relationship between the thermocouple reading and
the actual temperature in the high temperature furnace was
determined as part of this study, using known transition
temperatures of single crystal quartz (846 K), LaAlO3

(817 K) and Ca0.7Sr0.3TiO3 (1204 K). It was found that a
plot of the actual transition temperatures, Tact, against the
observed transition temperatures, Tobs, for high temperature
measurements, followed a straight line:

Tact = 4.3766 + 0.986 04Tobs. (1)
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Figure 1. Stack of RUS spectra for SrZrO3 collected in the
frequency range 200–1200 kHz at temperatures between 153 and
1531 K. Above room temperature, spectra are those collected during
cooling. Below room temperature, spectra collected during heating
are shown. In this plot the y-axis is amplitude but the spectra have
been displaced in proportion to the temperature at which they were
collected. This temperature scale is then shown as the y-axis.

All temperatures quoted and used in the text and in figures
throughout this paper have been corrected according to this
calibration. No temperature corrections were carried out for
measurements taken using the low temperature apparatus, as
the known Pm3̄m ↔ I 4/mcm transition in SrTiO3 was
observed exactly at 106 K, thus indicating that low temperature
thermocouple readings are accurate to at least ±1 K.

3. Results

3.1. Raw spectra

The influence of the three phase transitions of SrZrO3 on its
resonance peaks is immediately evident from the raw RUS
spectra, shown stacked as a function of temperature in figure 1.
Peaks in the spectra that are affected by temperature represent
the vibrational frequencies of normal modes of the sample.
Periodic, temperature-independent peaks at lower frequencies
are due to resonances of the alumina rods and are referred to
below as instrument noise.

The first thing that can be noticed about the sample
resonances is that there are distinct changes in peak positions
across the temperature range. In general, there is a steady but
gentle decrease in peak frequency with increasing temperature
across the whole range, presumably due to normal thermal
elastic softening, however, substantial anomalies in this pattern
are seen in the regions where transitions occur. On heating, the
first transition is marked by significant softening (frequencies
decrease rapidly) as it is approached from ∼950 K, with
frequency evolution abruptly returning to the gentle decrease
at 1038 K. The second transition is marked by the same
pattern of softening below the transition, from ∼1090 K, which
abruptly stops at 1122 K. Above this transition, however,
there is significant stiffening (frequencies increase rapidly) for
approximately 100 K. The third transition shows a similar
pattern to the second, with the change in slope between

softening and stiffening occurring at 1367 K. The temperature
interval over which the effects of this phase transition are seen,
however, is much smaller (only up to ∼20 K on either side of
the minimum point).

The abrupt changes in slope of peak frequencies are
believed to represent the temperatures at which the three
phase transitions occur: Pm3̄m ↔ I 4/mcm at 1367 K,
I 4/mcm ↔ Imma at 1122 K, and Imma ↔ Pnma at
1038 K. These temperatures are all only slightly higher than
those quoted by Howard et al (2000) (1343 K, 1113 K and
1023 K respectively).

Additional features of the resonance peaks as they evolve
with temperature are their changes in amplitude and width. At
room temperature, all the peaks are sharp and strong. In the
region of the three phase transitions, peaks are broad and have
much smaller amplitudes, making it difficult to distinguish
them from instrument noise in the most extreme cases. This
is the case, especially at higher frequencies, for most peaks
in spectra collected within the stability fields of the Imma
and I 4/mcm phases. In spectra from the cubic phase, peak
resolution is much better again.

Finally, it is important to note that, although resonance
peaks from the cubic phase are well resolved at first, their
intensities decrease and their line widths increase at the highest
temperatures. Above ∼1470 K, virtually all peaks in the
spectra have disappeared.

3.2. Frequency, Q−1, K and G variations

For ease of inspection, the measured peak frequencies of
the first 3 peaks in the spectra are plotted across the full
temperature range in figure 2(a). This clearly shows the
changes in slope associated with each of the three phase
transitions, with an overall gentle decrease as temperature
increases across the entire range. Comparison of peak
positions during heating and cooling runs (included for the
third peak in figure 2(a)) shows that there is no obvious
hysteresis in the phase transition temperatures. Resonance
frequencies appear to be almost identical during heating and
cooling, except at temperatures within the stability field of
the I 4/mcm phase where peaks occur at significantly lower
frequencies (up to 25 kHz) during heating than those recorded
during cooling. This suggests some possible sensitivity to the
twin configurations.

The full widths at half-maximum of the first three peaks
were used to measure the quality factor, Q. The first 2 peaks
in the spectra showed unreliable values for Q as they crossed
many of the low frequency noise peaks. Peak overlap results in
amplified peak amplitudes and therefore larger-than-expected
peak widths and false values for Q. This amplification is rather
useful, however, in that it allows the existence of low-Q peaks
to be detected, even though absolute values of peak position
and Q obtained from them are not accurate. The third peak
has only a little overlap with noise peaks in spectra from the
I 4/mcm and Imma phases. Q−1 for the third peak, shown as
a function of temperature in figure 2(b), therefore provides the
best representation of acoustic dissipation in the sample.

Dissipation is very low and constant in the Pnma phase
(Q−1 ≈ 0.001). This increases at around 950 K (the same
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Figure 2. Analysis of RUS spectra of SrZrO3 at temperatures
between 153 and 1531 K. (a) shows measured frequencies for the
first 3 peaks of the resonance spectra during heating for low
temperature data and cooling for high temperature data (closed
circles, open circles, and closed diamonds for the first, second and
third peaks respectively). The frequencies of the third peak measured
on cooling to low temperatures and heating to high temperatures are
shown for comparison (crosses). (b) is the evolution of Q−1 for the
third peak, measured on cooling from high temperatures and heating
from low temperatures (closed diamonds connected with solid lines).
Crosses connected with dashed lines represent the dissipation for
heating above room temperature and cooling below room
temperature. (c) shows the fitted values for bulk (K , squares) and
shear (G, triangles) moduli based on peak positions measured during
cooling from high temperatures and heating from low temperatures.
Uncertainties in both K and G are within the bounds of the symbol
sizes. The dashed vertical lines on all figures represent the phase
transition temperatures estimated from the breaks in slope of peak
frequencies.

temperature as the sudden decrease in frequencies) and stays at
values of ∼0.004–0.007 throughout most of the stability fields
of the I 4/mcm and Imma phases. In the vicinity of each phase
transition there are clear maxima in Q−1 of up to ∼0.02. The
increase in Q−1 appears to start ∼50 K ahead of the presumed
transition points, whether they are approached from above or

below. During heating, Q−1 of the cubic phase at first reduces
to values which are similar to those in the Pnma stability field.
On subsequent cooling, these remain slightly higher, however.
Values for Q−1 in the I 4/mcm, Imma and Pnma phases all
seem to be similar during heating and cooling (figure 2(b)).

Fitted values for bulk and shear moduli (figure 2(c)) follow
the same form as the frequency plot. These values are based
on fits of approximately 20 resonance peaks for temperatures
from room temperature up to 900 K. Between 900 K and
1365 K, only 5–10 peaks were measurable in the spectra and
fits based on this number of resonances are less accurate. From
1365 K to 1475 K, fits are again based on ∼20 peaks. The
fit for the highest temperature measured (1531 K) is only
based on 9 peaks. At this point, most peaks have disappeared.
For temperatures in the I 4/mcm and Imma fields, it was
necessary to use starting values for the fits that were very close
to the final fitted values. A calibration of G as a function
of (frequency)2 for the third resonance peak from the Pnma
phase was created based on the fact that the elastic constants
of a material are directly proportional to the squares of the
frequencies of its normal modes (Migliori and Sarrao 1997),
and that the lowest frequency peaks are usually determined by
almost pure shear modes. This calibration was found to match
closely with data for the shear modulus, G, of the Pm3̄m phase
and was therefore considered to give a reliable determination
of G for the I 4/mcm and Imma phases when only a small
number of peaks could be observed. These values for G were
then used as the starting values of fits for the I 4/mcm and
Imma phases.

It is evident from figure 2(c) that the elastic constants,
especially the shear modulus, are strongly affected by each of
the three phase transitions in SrZrO3. There is a large amount
of elastic softening associated with each phase transition, with
the I 4/mcm and Imma phases being significantly softer (up
to ∼50 GPa) than the Pm3̄m and Pnma phases. From the
perspective of elasticity alone, the properties of the Pm3̄m and
Pnma phases are rather similar.

3.3. Experimental uncertainties

For low temperature measurements, the temperature stability
at each equilibration step is approximately ±0.1 K. Using
the high temperature RUS system, the estimated precision
is approximately ±0.3 K for temperatures below 1255 K
and approximately ±1 K for temperatures above 1255 K. As
the transition temperatures in this study are estimated from
breaks in slope of frequencies of RUS spectra collected at 1 K
intervals, there is also an error on each value of at least ±1 K.

As stated earlier, the parallelepiped used for all
measurements was cut from a sintered pellet with ∼2.8%
porosity. This porosity has some effect on the absolute values
of elastic moduli. A correction can be applied to give a
value for 0% porosity using the expressions given by Ledbetter
et al (1994). Using this correction, room temperature values,
measured from the raw data as K = 147.5 GPa and G =
84.52 GPa, become K = 157.37 GPa and G = 89.26 GPa for
a 100% dense sample. A similar correction could be applied to
all the data but has not been carried out in this analysis, as the
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form of the relative effects of the phase transitions on elastic
moduli can be seen clearly in the uncorrected data (figure 2(c)).
No correction for thermal expansion has been applied, for the
same reasons.

Absolute values for elastic moduli are also influenced by
the number of measured resonance peaks used for the fitting
process. The more peaks that can be fitted, the more robust
the refinement. The quality of the fit between calculated and
observed resonance frequencies is quoted in the output DRS
fitting file as a RMS (root mean square) error percentage. The
estimated errors in K and G associated with the fit are also
given in the output file. Where ∼20 peaks were used for fitting
(up to 900 K and above 1365 K), RMS errors are between 0.25
and 0.5% and uncertainties in K and G are 0.5–1% and 0.1–
0.2% respectively. These values imply a ‘good fit’, following
Migliori and Sarrao (1997). Between 900 K and 1365 K, when
only 5–10 peaks are used for the fit, RMS errors are between
0.5 and 1% with uncertainties in K and G being 1–5% and
0.2–0.3% respectively, with the largest uncertainties being at
each of the phase transition temperatures. The important point
to note here is that G is relatively well constrained across the
whole temperature range, whereas K shows a much larger
variation in uncertainties, especially in the Imma and I 4/mcm
stability fields. Such uncertainties are not shown in figure 2(c)
as they are well within the bounds of the symbol size for values
of G and only up to the size of the symbols for K .

4. Strain analysis

Variations of elastic constants associated with octahedral
tilting transitions in perovskites arise largely as a consequence
of strain/order parameter coupling. Formal relationships
between spontaneous strains and individual order parameter
components described by Landau theory provide a measure of
the evolution of a structure across multi order parameter space.
They can also be used to extract expressions for the evolution
of individual elastic constants or of bulk elastic properties. In
this context, combinations of M- and R-point tilts are expected
to conform to relationships derived from a Landau expansion
of the form (Carpenter et al 2001, Carpenter 2007):
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6

)
+ λ′

q

(
q2

1 q2
4 + q2

2 q2
5 + q2

3 q2
6

)
+ λ1ea

(
q2

1 + q2
2 + q2

3

) + λ2ea
(
q2

4 + q2
5 + q2

6

)

+ λ3

[√
3eoz

(
q2

2 − q2
3

) + etz
(
2q2

1 − q2
2 − q2

3

)]

+ λ4

[√
3eoz

(
q2

5 − q2
6

) + etz
(
2q2

4 − q2
5 − q2

6

)]
+ λ5 (e4q4q6 + e5q4q5 + e6q5q6)

+ λ6
(
q2

1 + q2
2 + q2

3

) (
e2

4 + e2
5 + e2

6

)
+ λ7

(
q2

1 e2
6 + q2

2 e2
4 + q2

3 e2
5

)
+ 1

4

(
C0

11 − C0
12

) (
e2

oz + e2
tz

) + 1
6

(
C0

11 + 2C0
12

)
e2

a

+ 1
2 C0

44

(
e2

4 + e2
5 + e2

6

)
. (2)

I 4/mcm, Imma and Pnma structures have q4 �= 0 (q1 =
q2 = q3 = q5 = q6 = 0), q4 = q6 �= 0 (q1 = q2 =
q3 = q5 = 0) and q4 = q6 �= 0, q2 �= 0 (q1 = q3 = q5 =
0), respectively, for the relationships between crystallographic
axes and the orthogonal reference axes, X , Y , Z , specified in
figure 1 of Carpenter (2007). a1, a2, b1, etc, are normal Landau
coefficients; �s1,�s2 are saturation temperatures; Tc1, Tc2 are
critical temperatures; λ1, λq, etc, are coupling coefficients;
C0

11, C0
12, C0

44 are bare elastic constants; and e4, e5, e6 are shear
strain components. The symmetry-adapted strains, ea, eoz and
etz are combinations of the linear strain components e1, e2 and
e3 as

ea = (e1 + e2 + e3) (3)

eoz = (e1 − e2) (4)

etz = 1√
3

(2e3 − e1 − e2) . (5)

A subscript z has been included to indicate that the tetragonal
and orthorhombic shear strains, etz and eoz, are specified for
the unique direction being parallel to Z . For Imma and Pnma
structures, it is convenient to specify the unique axis of the
tetragonal strain as being parallel to X , in which case the
symmetry breaking strains are defined as:

eox = (e2 − e3) (6)

etx = 1√
3

(2e1 − e2 − e3) . (7)

Setting equilibrium conditions of the form ∂G/∂e = 0 then
gives the strain/order parameter relationships listed in table 2.

Lattice parameter data for SrZrO3 obtained by Howard
et al (2000) using high resolution powder neutron diffraction
are reproduced in figure 3(a), and have been used to determine
the evolution of individual strains. Variations of spontaneous
strains calculated from these for I 4/mcm, Imma and Pnma
structures, using the expressions given in table 2, are shown
in figure 3(b). The reference parameter a0 represents the
lattice parameter of the cubic phase extrapolated from high
temperatures, as specified by (after Salje et al 1991, Meyer
et al 2000, 2001, Sondergeld et al 2000, Carpenter et al 2003):

a0 = a1 + a2�os coth

(
�os

T

)
. (8)

The saturation temperature, �os, was set arbitrarily to 150 K
in order to introduce some more or less realistic curvature as
T → 0 K. A fit to the lattice parameters for the cubic phase
then gave a1 = 4.0869 Å, a2 = 4.8848 × 10−5 Å K−1.

6
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Table 2. Relationships between spontaneous strains and order parameter components of I4/mcm, Imma and Pnma structures, as derived
by applying the equilibration condition ∂G/∂e = 0 to equation (2). Definitions of the strain components, e1–e4, in terms of the lattice
parameters, a, b, and c, are reproduced from Carpenter et al (2001); a0 is the reference lattice parameter of the parent cubic phase.

I4/mcm Imma Pnma

ea = − λ2q2
4

1
3 (C0

11 + 2C0
12)

ea = − 2λ2q2
4

1
3 (C

0
11 + 2C0

12)
ea = − (λ1q2

2 + 2λ2q2
4 )

1
3 (C0

11 + 2C0
12)

eoz = 0 eox = 0 eox = 0

etz = − 2λ4q2
4

1
2 (C

0
11 − C0

12)
etx = 2λ4q2

4
1
2 (C0

11 − C0
12)

etx = −2(λ3q2
2 − λ4q2

4 )
1
2 (C

0
11 − C0

12)

e4 = e5 = e6 = 0 e4 = −λ5q2
4

C0
44

e4 = − λ5q2
4

2q2
2 (λ6 + λ7) + C0

44

e5 = e6 = 0 e5 = e6 = 0

e1 = e2 =
a√
2

− a0

a0
e1 =

b
2 − a0

a0
e1 =

b
2 − a0

a0

e3 =
c
2 − a0

a0
e2 + e3 =

a√
2

− a0

a0
+

c√
2

− a0

a0
e2 + e3 =

a√
2

− a0

a0
+

c√
2

− a0

a0

e4 =
a√
2

− a0

a0
−

c√
2

− a0

a0
e4 =

a√
2

− a0

a0
−

c√
2

− a0

a0

Variations of the volume strain ea are sensitive to the choice
of a0, but values of shear strains are relatively independent of
this fitting process.

The square of the tetragonal strain, etz, varies linearly
with temperature in the stability field of the I 4/mcm structure
(figure 3(c)), implying that the Pm3̄m ↔ I 4/mcm transition
is close to being tricritical in character, with Tc2 = 1342 K
(e2

tz ∝ q4
4 ∝ (Tc − T )). The Imma structure develops by a

first order transition from the I 4/mcm structure, but is related
to the Pm3̄m structure by the same instability and tricritical
evolution, as shown by the linear temperature dependence
of e2

tx (figure 3(c)). The Pnma structure develops from the
Imma structure by a continuous change in lattice parameters
at 1018 K, and the deviation of etx from the trend established
in the Imma stability field provides a measure of q2

2 (see
table 2). If it is assumed that q4 and q2 are only weakly
coupled, such that q4 has the same temperature dependence
in the Pnma structure as it does in the Imma structure, the
change in etx (‘etx, excess’ in figure 3(b)) provides a measure
of q2

2 . Figure 3(d) shows that (etx, excess)2 varies linearly
with temperature over a significant temperature interval below
1018 K, consistent with q4

2 ∝ T and close to tricritical
character for the Imma ↔ Pnma transition. The Imma
structure has e4 close to zero, implying that the coupling
coefficient λ5 is small. This shear strain would be expected
to show the same dependence on q4 in the Pnma stability
field since, to a good approximation, C0

44 is expected to be
substantially greater than 2q2

2 (λ6 + λ7). However, e4 increases
markedly (figure 3(b)) with decreasing temperature, as if λ5

is itself temperature dependent. The variation of e0.5
4 with

temperature is not far from being linear (figure 3(e)) and one
possible explanation of this behaviour is that λ5 is sensitive to
the degree of M-point tilting, say as λ5 ∝ q2

2 or λ5 ∝ q4
2 .

The physical origin of such an effect could lie in the fact
that the octahedra are not rigid units and deform as they tilt;
deformation of the octahedra associated with M-point tilting
would change the amount of geometrical strain associated with

R-point tilting. Distortions of the octahedra are presumably
responsible also for the unusual evolution of the volume strain,
ea, which changes sign from negative to positive with falling
temperature and is close to zero in the Imma stability field
(figure 3(b)).

Tilt angles extracted from the original neutron powder
diffraction data of Howard et al (2000) confirm these
strain/order parameter relationships. Figure 3(f) contains e2

t

(left axis) and φ4 (right axis), where φ is the R-point tilt angle,
scaled so that the data points overlap. The tilt angles scale as
φ2 ∝ et , with a constant ratio for the Imma and I 4/mcm
structures. The M-point tilt angle, ϕ, varies approximately as
ϕ4 ∝ (Tc − T ), within reasonable experimental uncertainty
(figure 3(g)), consistent with the view that the Imma ↔
Pnma transition is also close to being tricritical in character.
φ4 varies continuously through this transition without an
obvious break in slope (figure 3(g)), implying that coupling
between the M-point and R-point tilts in the Pnma structure is
indeed weak.

5. Predicted form of the elastic anomalies

The underlying mechanism of elastic softening due to
octahedral tilting transitions in perovskites is well understood.
An externally applied stress causes a lattice distortion
according to Hooke’s law. There is then an additional
relaxation as the tilt angles respond to the change in strain
through the strain/order parameter coupling coefficients. This
relaxation is described formally by the widely used expression
for individual elastic constants, Cik , given by Slonczewski and
Thomas (1970):

Cik = C0
ik −

∑
l,m

∂2G

∂ei∂ql
Rlm

∂2G

∂ek∂qm
, (9)

7
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Figure 3. Strain analysis of lattice parameter data from Howard et al (2000). (a) Lattice parameters of the reduced unit cell. The solid line is a
fit of equation (8) to data for the cubic phase, with �os = 150 K. (b) Spontaneous strains calculated using the expressions listed in table 2.
The broken line is a fit to etx for the Imma structure as e2

tx ∝ T . (c) The square of the tetragonal strains varies linearly with temperature across
the stability fields of the I4/mcm and Imma structures and extrapolates to zero at the same instability temperature. This is consistent with
tricritical character for Pm3̄m ↔ I4/mcm and Pm3̄m ↔ Imma transitions with Tc2 = 1342 K. (d) The excess tetragonal strain from (b)
varies as e2

tx ∝ T for a wide temperature interval below the Imma ↔ Pnma transition point, consistent with tricritical character for this
transition. (e) The strain e4 has an unusual temperature dependence in (b) which corresponds approximately to e0.5

4 ∝ T in the Pnma stability
field. (f) e2

t (left axis) and φ4 (right axis) show the same linear temperature dependence in the I4/mcm and Imma structures, consistent with
et ∝ φ2(∝ q2

4 ) in both. (g) φ4 and ϕ4 scale approximately linearly with temperature, consistent with an approximately tricritical evolution of
both. There is no obvious break in slope or discontinuity in the temperature dependence of φ at the Imma ↔ Pnma transition, consistent
with there being only weak coupling between the M-point and R-point order parameters in the Pnma structure.

where C0
ik are the bare elastic constants. The matrix, Rlm , is

the inverse of the matrix, ∂2G
∂ql∂qm

, i.e.

∑
m

Rlm
∂2G

∂qm∂qn
= δln . (10)

For almost all cases examined in the literature, the matrix
∂2G

∂ql∂qm
and hence Rlm contain only diagonal terms. Equation

(9) is often given in a simplified form, therefore, such as

Cik = C0
ik −

∑
m

∂2G

∂ei∂qm

(
∂2G

∂q2
m

)−1
∂2G

∂ek∂qm
. (11)

8
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Table 3. Elastic constant variations expected in the stability field of
a structure with I4/mcm symmetry (q4 �= 0, q5 = q6 = 0), due to a
transition from a parent cubic structure with Pm3̄m symmetry.

C11 = C22 = C0
11 − M2 R44q2

4 C13 = C23 = C0
12 − M N R44q2

4
C33 = C0

11 − N2 R44q2
4 C44 = C55 = C0

44 − λ2
5 R66q2

4

C12 = C0
12 − M2 R44q2

4 C66 = C0
44

a KV = 1
3 (C0

11 + 2C0
12) − 4λ2

2 R44q2
4

a GV = 1
5 (C

0
11 − C0

12 + 3C0
44) − 2

5 (8λ2
4 R44 + λ2

5 R66)q2
4

R44 = 1
G44

R66 = 1
G66

G44 = ∂2G/∂q2
4 = 2(b2 + b′

2)q
2
4 + 4(c2 + c′′

2)q
4
4

G66 = ∂2G/∂q2
6 =

[
12λ2

4
1
2 (C0

11−C0
12)

− b′
2

]
q2

4 − 2
3 c′′

2 q4
4

M = (2λ2 − 4√
3
λ4) N = (2λ2 + 8√

3
λ4)

Elastic constants, Cik,c , for a unit cell with conventional orientation
(a ‖ X , b ‖ Y , c ‖ Z ):
C11,c = C22,c = 1

2 (C11+C12)+C66 C13,c = C23,c = C13

C33,c = C33 C44,c = C55,c = C44

C12,c = 1
2 (C11 + C12) − C66 C66,c = 1

2 (C11 − C12)

a Expressions for the Voigt limits of bulk and shear modulus in
terms of single crystal elastic constants for a crystal with 4/mmm
symmetry were taken from Watt and Peselnik (1980).

The relaxation of individual elastic constants can have
a variety of forms, depending on the nature of the relevant
strain/order parameter coupling term and the thermodynamic
character of the phase transition. For the simplest case of
an improper ferroelastic transition a typical solution is C =
C0 − λ2 Rq2. Whether the strain/order parameter coupling
coefficient, λ, is positive or negative, lowering of the symmetry
causes softening. R usually has the form (Aq2+Bq4)−1 so that

the transition point is marked by a discontinuity in some of the
elastic constants.

The reference system underlying equation (2) is that of
the group theory program, ISOTROPY (Stokes and Hatch,
Brigham Young University). Crystallographic orientations for
I 4/mcm, Imma and Pnma structures with respect to this
reference system are shown in Carpenter (2007). Expressions
for changes in elastic properties for each of these structures
with respect to the parent Pm3̄m structure are listed in
tables 3–6. Of principal interest in the present context are
the bulk modulus, K , and shear modulus, G. The simplest
form of these is given by the Voigt limits, KV and GV,
which are included to show the role of specific strain/order
parameter coupling terms. KV is not likely to differ greatly
from the Reuss limit of the bulk modulus, KR, so the
expressions provided are probably good representations of the
expected elastic anomalies in K . The Reuss limit of the
shear modulus, GR, will be significantly different from the
Voigt limit, however, so that the expressions for GV provide
only qualitative representations of the evolution of G. These
expressions confirm that both K and G are expected to soften
as a consequence of Pm3̄m ↔ I4/mcm and Pm3̄m ↔
Imma transitions. From the analysis above, it is apparent
that λ5 is small in SrZrO3, so any observed softening of the
shear modulus can be attributed mainly to coupling of order
parameter components with the tetragonal strain.

The I 4/mcm and Imma structures of SrZrO3 are related
to the cubic parent structure via the same instability and have
an order parameter evolution characteristic of near tricritical
behaviour. Their evolution is expected to follow solutions to

Table 4. Elastic constant variations expected in the stability field of a structure with Imma symmetry (q4 = q6 �= 0, q5 = 0), due to a
transition from a parent cubic structure with Pm3̄m symmetry.

C11 = C0
11 − 2M2(R44 + R46)q2

4 C55 = C66 = C0
44 − λ2

5 R55q2
4

C22 = C33 = C0
11 − [(M2 + N2)R44 + 2M N R46]q2

4 C14 = −2Mλ5(R44 + R46)q2
4

C12 = C13 = C0
12 − (M2 + M N)(R44 + R46)q2

4 C24 = C34 = −(M + N)λ5(R44 + R46)q2
4

C23 = C0
12 − [2M N R44 + (M2 + N2)R46]q2

4 C56 = −λ2
5 R55q2

4

C44 = C0
44 − 2λ2

5(R44 + R46)q2
4

a KV = 1
3 (C0

11 + 2C0
12) − 8λ2

2(R44 + R46)q2
4

a GV = 1
5 (C

0
11 − C0

12 + 3C0
44) − 2

5 (8λ2
4(2R44 − R46) + λ2

5(R44 + R46 + R55))q2
4

R44 = R66 = G44
G2

44−G2
46

, R46 = −G46
G2

44−G2
46

, R55 = 1
G55

G44(= G66) = ∂2G/∂q2
4 =

(
2b2 + 2b′

2 + λ2
5

C0
44

)
q2

4 + 8(c2 + 2
3 c′′

2 )q
4
4

G55 = ∂2G/∂q2
5 =

[
λ2

5

C0
44

+ 12λ2
4

1
2 (C0

11−C0
12)

− b′
2

]
q2

4 + 1
3 (c

′
2 − 4c′′

2)q
4
4

G46 = ∂2G/∂q4∂q6 =
(

2b2 − λ2
5

C0
44

)
q2

4 + 8(c2 + 1
3 c′′

2 )q
4
4

Elastic constants, Cik,c , for a unit cell with conventional orientation (a ‖ X , b ‖ Y , c ‖ Z ):
C11,c = 1

2 (C22 + C23) + 2C24 + C44 C23,c = C12 − C14

C22,c = C11 C44,c = 1
2 (C55 + C66) − C56

C33,c = 1
2 (C22 + C23) − 2C24 + C44 C55,c = 1

2 (C22 − C23)

C12,c = C12 + C14 C66,c = 1
2 (C55 + C66) + C56

C13,c = 1
2 (C22 + C23) − C44

a Expressions for the Voigt limits of bulk and shear modulus in terms of single crystal constants for
an orthorhombic crystal were taken from Watt (1979).
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Table 5. Elastic constant variations expected in the stability field of
a structure with P4/mbm symmetry (q2 �= 0, q1 = q3 = 0), due to a
transition from a parent cubic structure with Pm3̄m symmetry.

C11 = C0
11 − P2 R22q2

2 C23 = C0
12 − O2 R22q2

2
C22 = C33 = C0

11 − O2 R22q2
2 C44 = C0

44 + 2(λ6 + λ7)q2
2

C12 = C13 = C0
12 − O P R22q2

2 C55 = C66 = C0
44 + 2λ6q2

2
a KV = 1

3 (C
0
11 + 2C0

12) − 4λ2
1 R22q2

2

a GV = 1
5 (C0

11 − C0
12 + 3C0

44) − 2
5 (8λ2

3 R22 − 3λ6 − 2λ7)q2
2

R22 = 1
G22

G22 = ∂2G/∂q2
2 = 2(b1 + b′

1)q
2
2 + 4(c1 + c′′

1 )q
4
2

O = (2λ1 − 4√
3
λ3) P = (2λ1 + 8√

3
λ3)

Elastic constants, Cik,c , for a unit cell with conventional orientation

(a ‖ X , b ‖ Y , c ‖ Z):

C11,c = C22,c = 1
2 (C22 + C23) + C44 C13,c = C23,c = C12

C33,c = C11 C44,c = C55,c = C55

C12,c = 1
2 (C22 + C23) − C44 C66,c = 1

2 (C22 − C23)

a Expressions for the Voigt limits of bulk and shear modulus in
terms of single crystal elastic constants for a crystal with 4/mmm
symmetry were taken from Watt and Peselnik (1980).

the renormalized form of equation (2):

G = 1

2
a2�s2

(
coth

(
�s2

T

)
− coth

(
�s2

Tc2

)) (
q2

4 + q2
5 + q2

6

)

+ 1
4 b∗

2

(
q2

4 + q2
5 + q2

6

)2 + 1
4 b′∗

2

(
q4

4 + q4
5 + q4

6

)
+ 1

6 c2
(
q2

4 + q2
5 + q2

6

)3 + 1
6 c′

2(q4q5q6)
2

+ 1
6 c′′

2

(
q2

4 + q2
5 + q2

6

) (
q4

4 + q4
5 + q4

6

)
(12)

where

b∗
2 = b2 − λ2

5

C0
44

− 2λ2
2

1
3

(
C0

11 + 2C0
12

) + 4λ2
4

1
2

(
C0

11 − C0
12

) ≈ 0 (13)

b′∗
2 = b′

2 + λ2
5

C0
44

− 12λ2
4

1
2

(
C0

11 − C0
12

) ≈ 0. (14)

Solutions for the temperature dependence of q4 in the I 4/mcm
and Imma stability fields are then, respectively,

q4
4 =

a2�s2

(
coth

(
�s2
Tc2

) − coth
(

�s2
T

))
(
c2 + c′′

2

) (15)

4q4
4 =

a2�s2

(
coth

(
�s2
Tc2

) − coth
(

�s2
T

))
(
c2 + 1

2 c′′
2

) . (16)

Note that, because of the difference between one
dimensional and two dimensional order parameters in the
I 4/mcm and Imma structures, the absolute value of q2

4 in
the Imma structure is half the value of q2

4 in the I 4/mcm
structure. The actual evolution of the two structures is therefore
almost identical apart from the small difference introduced
in the denominator. This is consistent with the observed
behaviour of SrZrO3, as shown by replotting of the tetragonal
strains and tilt angles in figure 3(f). When a tricritical solution
for q4 is substituted into the expressions for GV, KV, R44,
R55, and R46, the well known form of softening illustrated in

Figure 4. Schematic variation of shear modulus, G, expected on the
basis of Landau theory for tricritical Pm3̄m ↔ I4/mcm,
Pm3̄m ↔ Imma and Imma ↔ Pnma transitions (tables 3–6) with
critical temperatures of Tc2 and Tc1. The first order transition between
I4/mcm and Imma structures at Ttr is expected to show only a small
discontinuity.

figure 4 is predicted. The I 4/mcm ↔ Imma transition is
expected to be marked only by a small discontinuity in K and
G, without any premonitory softening as the transition point is
approached from either side.

The Imma ↔ Pnma transition can be understood in
terms of the evolution of q2 below an M-point instability.
In one limiting case, this would simply produce a second
softening event described by the elastic constants listed in
table 5. If q2 follows a tricritical temperature dependence, the
form should be similar to softening at the R-point instability,
giving the sequence of elastic anomalies illustrated in figure 4.
However, q2 and q4 are coupled, either directly through
the coupling terms λq(q2

1 + q2
2 + q2

3 )(q
2
4 + q2

5 + q2
6 ) +

λ′
q(q

2
1 q2

4 + q2
2 q2

5 + q2
3 q2

6 ) in equation (2) or indirectly via
common strains. Applying an external stress to the Pnma
structure should therefore produce relaxations in both q2

and q4, though with potentially different consequences for
the elastic constants from the single instabilities considered
previously in the literature. In order to examine this behaviour
in more detail, it is necessary to apply the Slonczewski and
Thomas (1970) equation to 6 × 6 matrices and to consider
all possible cross terms. Formal analysis of equation (2) on
this basis gives the expressions listed in table 6. Whereas
the pure M-point (P4/mbm) and R-point (I 4/mcm, Imma)
instabilities should give changes in elastic constants which
depend predominantly on −λ2

1, −λ2
2, −λ2

3 or −λ2
4, expressions

for the Pnma structures can contain terms in −λ1λ2 and
−λ3λ4 which might be positive or negative. This means
that the Imma → Pnma transition could be accompanied
by a degree of elastic stiffening. However, λ1 and λ2 are
evidently small and, from the variation of etx with temperature,
λ3 and λ4 both have the same sign. Furthermore, with the

exception of ∂2G
∂q2∂q4

, which equals 4λqq2q4, the individual

second derivatives of G have the form Aq2+Bq4. A numerical
analysis would be needed to show for certain that the overall
influence on KV and GV would be softening, but the form
of all the expressions in table 6 leads to the expectation of a
discontinuous softening sequence with the general form shown
in figure 4. Terms in λ6 and λ7 could influence the curvature
below Tc2 but would not eliminate the discontinuity.
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Table 6. Elastic constant variations expected in the stability field of a structure with Pnma symmetry (q2 �= q4 = q6 �= 0,
q1 = q3 = q5 = 0), due to a transition from a parent cubic structure with Pm3̄m symmetry.

C11 = C0
11 − P2 R22q2

2 − 2M2(R44 + R46)q2
4 − 4P Mq2q4 R24

C22 = C33 = C0
11 − O2 R22q2

2 − [(M2 + N2)R44 + 2M N R46]q2
4 − 2(O M + O N)q2q4 R24

C12 = C13 = C0
12 − O P R22q2

2 − (M2 + M N)(R44 + R46)q2
4 − (2O M + P N + P M)q2q4 R24

C23 = C0
12 − O2 R22q2

2 − [2M N R44 + (M2 + N2)R46]q2
4 − 2(O M + O N)q2q4 R24

C14 = −2Mλ5(R44 + R46)q2
4 − 2Pλ5q2q4 R24

C24 = C34 = −(M + N)λ5(R44 + R46)q2
4 − 2Oλ5q2q4 R24

C44 = C0
44 + 2(λ6 + λ7)q2

2 − 2λ2
5(R44 + R46)q2

4

C55 = C66 = C0
44 + 2λ6q2

2 − λ2
5 R55q2

4

C56 = −λ2
5 R55q2

4
a KV = 1

3 (C0
11 + 2C0

12) − 4λ2
1 R22q2

2 − 8λ2
2(R44 + R46)q2

4 − λ1λ2q2q4 R24

a GV = 1
5 (C0

11 − C0
12 + 3C0

44) − 2
5 (8λ2

3 R22 − 3λ6 − 2λ7)q2
2

− 2
5 (8λ2

4(2R44 − R46) + λ2
5(R44 + R46 + R55))q2

4 + 32
5 λ3λ4q2q4 R24

Elastic constants, Cik,c , for a unit cell with conventional orientation (a ‖ X , b ‖ Y , c ‖ Z ):
C11,c = 1

2 (C22 + C23) + 2C24 + C44 C23,c = C12 − C14

C22,c = C11 C44,c = 1
2 (C55 + C66) − C56

C33,c = 1
2 (C22 + C23) − 2C24 + C44 C55,c = 1

2 (C22 − C23)

C12,c = C12 + C14 C66,c = 1
2 (C55 + C66) + C56

C13,c = 1
2 (C22 + C23) − C44

R22, R44, R55, R46, R24 are components of the inverse of the matrix
{(G11, 0, 0, 0, 0, 0), (0, G22, 0, G24, 0, G24), (0, 0, G11, 0, 0, 0),
(0, G24, 0, G44, 0, G46), (0, 0, 0, 0, G55, 0), (0, G24, 0, G46, 0, G44)} where
Gij = ∂2G

∂qi ∂q j

a Expressions for the Voigt limits of bulk and shear modulus in terms of single crystal elastic
constants for an orthorhombic crystal were taken from Watt (1979).

6. Discussion

6.1. Elastic behaviour

McKnight et al (2008) have recently shown that polycrys-
talline samples can remain coherent, without cracking, through
phase transitions involving the development of significant
spontaneous strains when the grain size is ∼5 μm or less. The
variations in elastic properties described here for SrZrO3 can,
therefore, be expected to be intrinsic to the grains themselves,
rather than to the development of any microcracking or pull-
apart along grain boundaries at the three phase transitions. A
possible exception to this is the change in Q−1 observed at the
highest temperatures in the stability field of the cubic phase.
If this is due to sample degradation of some sort, it does not
appear to have changed the rest of the elastic behaviour which
was more or less reproducible in heating and cooling cycles,
i.e. before and after heating to the highest temperatures.

Across the Pm3̄m ↔ I 4/mcm transition, the evolution of
elastic constants is as predicted for a tricritical phase transition.
There is some softening ahead of the transition over a very
narrow temperature region (∼10 K) which is not included in
the Landau model but this is a characteristic feature of phase
transitions which can generally be understood in terms of
fluctuations, as reviewed by Carpenter and Salje (1998), for
example. The transition itself is marked by a discontinuity
in both K and G, with softening of the I 4/mcm phase
(figure 2(c)) having the same form as is shown schematically
in figure 4. Similar large degrees of softening have also
been observed at the Pm3̄m ↔ I 4/mcm transition in the

(Ca,Sr)TiO3 perovskite system (Carpenter et al 2006, 2007,
Walsh et al 2008). A more quantitative analysis will require
full calibration of the Landau coefficients, as has been achieved
for SrTiO3 (Carpenter 2007).

The I 4/mcm ↔ Imma transition must necessarily
be first order in character (Devonshire 1949,1951, Howard
et al 2000). It marks a change from a one-component order
parameter system to a two-component system and, from the
strain analysis, Imma is related to the cubic structure by the
same instability as I 4/mcm. Therefore, it is expected that
there will simply be a small discontinuity in elastic properties
at the transition point. This is not the case, however, as distinct
softening is observed in both phases over a temperature interval
of up to 100 K on either side of the transition. The clear
implication of this is that there are premonitory effects in both
the Imma and I 4/mcm structures and that the transition does
not simply involve a discontinuous switch from one phase to
the other. The detailed mechanism of this transition is as yet
unknown, but one possibility is that clustering of local regions
of one tilt system occurs within the other on a dynamical basis.
This pattern of softening is identical to that observed in BaTiO3

(Cheng et al 1994, Zhang et al 1994) and may therefore be a
universal feature of hierarchical sequences of phase transitions.
In the case of BaTiO3, Cheng et al (1994) observed ‘anomaly-
peak pairs’ at each phase transition and attributed the sharper
one to the transition, with the broader peak accompanying it
suggested to be associated with twin-boundary or domain wall
relaxation before the transition point.
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What is most contrary to expectation in relation to the
elastic behaviour of SrZrO3 is the behaviour of K and G
across the Imma ↔ Pnma phase transition. Changes in both
bulk and shear moduli are continuous and there is substantial
stiffening in the Pnma phase on cooling from the transition
temperature, to the extent that the elastic constants return to
the trend established for the cubic phase as if there had been
no influence from any of the intermediate transitions. Strain
analysis shows that the Imma ↔ Pnma phase transition
occurs by approximately tricritical development of M-point
tilts and that coupling between M- and R-point tilts is weak.
Therefore, the expectation is that the transition should be
marked by a discontinuous drop in K and G as presented
in figure 4. The experimentally observed stiffening implies
that the strain/order parameter relaxation predicted by Landau
theory is not operating in the Pnma structure. In other words,
application of a stress in the RUS frequency range (1 MHz)
does not induce a relaxation of the tilts. Similar data were
obtained for (Ca,Sr)TiO3 (Carpenter et al 2006, 2007, Walsh
et al 2008) where the orthorhombic phase is also unexpectedly
stiffer than the tetragonal phase. The implication is that tilt
responses to stress become impeded once two tilt systems
operate together. It is not yet clear whether the same result
would be obtained at zero frequency, i.e. it could be purely an
effect of dispersion with respect to frequency; however, data of
Harrison et al (2003) for (Ca,Sr)TiO3 collected by dynamical
mechanical analysis at 0.01–50 Hz show that Young’s modulus
of the Pnma phase is only slightly smaller than for the cubic
phase extrapolated to the same temperature.

The origin of this unexpected aspect of the elastic
behaviour of SrZrO3 is perhaps related to the unusual variation
of the strain component, e4, observed in the Pnma stability
field. The coupling coefficient, λ5, appears to be a function
of the magnitude of the M-point tilt. If this is due to
distortion of the ZrO6 units, the freedom of the octahedra
to rotate in response to an applied stress might become
impeded. Combined R-point plus M-point tilts would thus
become constrained such that the elastic behaviour of the
Pnma structure is determined simply by bond compression,
much as it is in the cubic phase. This would have important
implications for silicate perovskites in the lower mantle which
should behave as classically stiff materials independent of
phase transitions at higher temperatures.

6.2. Dissipation behaviour

A peak in dissipation, Q−1 (shown in figure 2(b)), at the cubic
↔ tetragonal transition is a common feature of displacive
phase transitions and relates to the variation of susceptibility
close the transition point (Rehwald 1973, Fossheim et al
1974, Lüthi and Rehwald 1981, Fossheim and Fossum 1984,
Carpenter and Salje 1998, Schranz et al 1999, Kityk et al
2000). Within the tetragonal I 4/mcm stability field, Q−1

remains relatively high. This could be an intrinsic effect of
coupling between octahedral tilting and strain or an extrinsic
effect due to defects. The most likely explanation at present
is in terms of extrinsic contributions from the mobility of
transformation twin walls, as has been described in detail

for low frequency anelastic measurements in LaAlO3 and
(Ca,Sr)TiO3 (Harrison and Redfern 2002, Harrison et al 2003).
A change in twin wall configurations before and after heating
into the stability field of the cubic phase would then account
for the difference in Q−1 during heating and cooling, for
example. The degree of attenuation is not as high as has been
found at MHz frequencies in LaAlO3 (Carpenter et al 2006) or
(Ca,Sr)TiO3 (Walsh et al 2008), however.

The I 4/mcm ↔ Imma transition is marked by a
significant increase in Q−1 although there is some scatter in
the data. The scattered values show an overall peak across a
relatively wide temperature range (∼60 K). This is consistent
with some kind of dynamical clustering phenomenon as is
proposed to explain the additional elastic softening. Within
the Imma stability field, Q−1 remains high as if the twin walls
are just as mobile as they are in the I 4/mcm structure.

The Imma ↔ Pnma transition is marked by another
significant increase in Q−1, presumably reflecting the same
classical susceptibility mechanism as occurs at the Pm3̄m ↔
I 4/mcm transition. Q−1 then decreases on cooling until
∼900 K where it is reduced to similar values as in the cubic
phase during heating. The dissipation mechanism operating
between ∼900 K and the phase transition at 1038 K is not
understood, but the decline in Q−1 correlates approximately
with the increase in K and G. An intrinsic strain/order
parameter coupling loss mechanism and/or loss of twin wall
mobility could therefore be related to the same geometrical
mechanism proposed to account for the reversion of the Pnma
structure to a classically stiff (and high-Q) material.

6.3. Comparison with SrSnO3

The transformation behaviour of SrZrO3 appears to be
closely analogous to that of SrSnO3, in having exactly the
same sequence of structures with increasing temperature
(Mountstevens et al 2005, Glerup et al 2005, Goodwin et al
2007). Furthermore, the Pm3̄m ↔ I 4/mcm and Imma ↔
Pnma transitions in SrSnO3 are also both close to being
tricritical in character. A suggestion that the Imma ↔
Pnma transition involves some significant component of
order/disorder (Mountstevens et al 2005) was discounted
by Goodwin et al (2007) and the dominant mechanism is
octahedral tilting. The transition temperatures are reduced by
substitution of Sr by Ba, allowing the elastic and anelastic
anomalies associated with phase transitions in ceramic samples
of Sr0.8Ba0.2SnO3 and Sr0.6Ba0.4SnO3 to be investigated by
dynamical mechanical analysis at 1–6 Hz (Daraktchiev et al
2006, 2007). In Sr0.6Ba0.4SnO3, the Pm3̄m ↔ I 4/mcm
transition is marked by a decrease in G and an increase in
Q−1. The I 4/mcm ↔ Imma transition is marked by a
minimum in G and a maximum in Q−1, which is similar to the
variations observed here for SrZrO3 at ∼400 kHz. According
to the phase diagram given in figure 1 of Daraktchiev et al
(2007), Sr0.8Ba0.2SnO3 should have the Pnma structure at
room temperature. Distinct anomalies in the elastic properties
occurring at ∼580 and ∼850 ◦C do not match up with the
expected phase transitions at ∼450 and ∼700 ◦C, however, and
the stability limit of the Pnma structure in this sample remains
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unclear. Given this ambiguity in the results of Daraktchiev
et al (2006, 2007), it is not yet possible to conclude that the
Pnma structure necessarily causes any acoustic dissipation
which might be attributed to mobile twin walls. On the other
hand, it appears that the elastic and anelastic consequences
of the I 4/mcm ↔ Imma transition are rather similar
Sr0.8Ba0.2SnO3 at ∼1 Hz and in SrZrO3 at ∼400 kHz, though
the magnitude of the peak in Q−1 is smaller at high frequencies
than it is at low frequencies. Strikingly similar variations
in G and Q−1 are observed in the P4mm ↔ Amm2 and
Amm2 ↔ R3m transitions in BaTiO3 (Cheng et al 1994,
Zhang et al 1994), in which the driving mechanism depends
on ferroelectric displacements.

The implication is that softening of the shear modulus, G,
as the transition point is approached from above and below is a
general and characteristic feature of first order phase transitions
which are associated with different combinations of order
parameter components due to a single instability, irrespective
of whether the driving mechanism involves octahedral tilts
or ferroelectric displacements. Since this softening is not
anticipated on the basis of Landau theory, the likelihood is that
it is due to additional fluctuations or clustering when the excess
energy due to one tilt/displacement direction becomes the same
as the excess energy for a different direction.

7. Conclusion

The hierarchy of ferroelectric transitions analysed by
Devonshire (1949, 1951, 1954) for BaTiO3 is not completely
reproduced as an analogous tilting sequence in SrZrO3 but
the cubic ↔ tetragonal ↔ orthorhombic part of the sequence
is essentially the same for both systems. Devonshire showed
that the orthorhombic phase can only have an equilibrium
stability field if the fourth order Landau coefficient is negative,
giving first order transitions (see also Darlington 1997). In
SrZrO3 the transitions are close to tricritical (combined fourth
order coefficients ≈0 in equation (12)), but there is evidence
that the coupling coefficient, λ5, is not constant. There
is some scope for small variations in strain/order parameter
coupling causing stabilization of the Imma structure relative
to I 4/mcm or R3̄c, therefore. Such effects could also then
stabilize Pnma (≈Imma + P4/mbm) structures relative to
Cmcm (≈I 4/mcm + P4/mbm).

In this study we have shown, further, that the pattern
of elastic properties of SrZrO3 is also closely similar to the
pattern previously found for BaTiO3. Order parameter and
strain evolution in transformation hierarchies for ferroelectric
displacement and ferroelastic tilt systems thus appear to
conform to essentially the same mean field model, together
with specific deviations from this in the vicinity of each
transition. The Pnma phase, however, is quite different. The
strain variation still shows strain/order parameter coupling, but
this is no longer detected in the elastic responses. It thus
appears that a combination of R- and M-point tilting causes
a suppression of the dynamic relaxation, both in relation to
elastic constants and to dissipation by twin walls. This may
be a general feature of multiple order parameter phenomena.
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